Connexin43 phosphorylation by PKC and MAPK signals VEGF-mediated gap junction internalization

نویسندگان

  • Wutigri Nimlamool
  • Rachael M. Kells Andrews
  • Matthias M. Falk
  • Asma Nusrat
چکیده

Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell-cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell-cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program--including PKC and MAPK--that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells.

Gap junction intercellular communication (GJIC) is involved in the regulation of many cellular processes. The gap junction channels are made up of connexins and the flow of polar low molecular weight molecules through these channels is inhibited by several groups of substances, such as tumour promoters and growth factors. The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), chlordane a...

متن کامل

Protein kinase Cδ-mediated phosphorylation of Connexin43 gap junction channels causes movement within gap junctions followed by vesicle internalization and protein degradation.

Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is invers...

متن کامل

The natural cardioprotective particle HDL modulates connexin43 gap junction channels.

AIMS High-density lipoprotein (HDL) is known for its cardioprotective properties independent from its cholesterol transport activity. These properties are mediated by activation of kinases such as protein kinase C (PKC). Connexin43 (Cx43) is a gap junction protein present in ventricular cardiomyocytes. PKC-dependent phosphorylation modifies Cx43 gap junction channel properties and is involved i...

متن کامل

Nitric oxide, PKC-ε, and connexin43 are crucial for ischemic preconditioning-induced chemical gap junction uncoupling

Ischemic preconditioning (IPC) maintains connexin43 (Cx43) phosphorylation and reduces chemical gap junction (GJ) coupling in cardiomyocytes to protect against ischemic damage. However, the signal transduction pathways underlying these effects are not fully understood. Here, we investigated whether nitric oxide (NO) and protein kinase C-ε (PKC-ε) contribute to IPC-induced cardioprotection by ma...

متن کامل

Gap junction-mediated intercellular communication in ischemic preconditioning.

Gap junction-mediated communication can modulate cell death in different tissues. In myocardium, gap junction communication is altered during ischemia, which contributes to the development of arrhythmias, but still allows synchronization of the onset of rigor contracture in the progression of injury. During reperfusion, gap junction communication allows cell-to-cell spread of hypercontracture a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015